LIFE SCIENCES FOR ENGINEERS

Course Code	19BS1404	Year	II	Semester	II
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	2	L-T-P	2-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

						Cou	rse Ou	itcome	es					
After successful completion of the course, the student will be able to														
CO1	Apply	Apply the principles of biology to create tangible and economically viable engineering goods.												
CO2	Know and illustrate bio-engineering field.													
CO3	Analyse the importance of bioenergetics and apply the knowledge to improve the living standards													
	of societies.													
CO4	Gain basic knowledge in genetic engineering.													
CO5	Design and develop new technologies in genetic industrial field.													
C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Streng	gth of o	correla	ations	(3: Hi	gh, 2:	Mediu	ım, 1:	Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							

	Syllabus	
UNIT	Contents	Mapped
NO		POS
I	Introduction to Biology	CO1
	Comparison of Biological organisms with manmade systems- eye and camera,	CO3
	flying bird and aircraft. Classification of living organisms- Cellular basis of life,	CO5
	differences between prokaryotes and eukaryotes, classification on the basis of carbon	
	and energy sources	
Ш	Bio-molecules	CO1
	Structure and functions of proteins and nucleic acids, hemoglobin, antibodies.	CO2
	Enzymes-Industrial applications, Fermentation and its industrial applications.	
III	Bioenergetics and Respiration	CO2
	Glycolysis and TCA cycle, Electron transport chain and oxidative phosphorylation,	CO3
	Mechanism of photosynthesis. Human physiology.	
IV	Genetic Engineering	CO2
	Mendel's laws, gene mapping, Mitosis and Meiosis, Epistasis, single gene	CO4
	disorders in humans. Genetic code.	CO5

V	Recombinant DNA Technology					
	Recombinant vaccines, transgenic microbes, plants and animals. Animal	CO4				
	cloning, biosensors, biochips.	CO5				

Learning Resources
Text Books
1. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global
approach", Pearson Education Ltd, 2018.
2. Arthur T Johnson, Biology for Engineers, CRC press, 2011.
Pafaranca Baaks

Reference Books

- 1. Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014.
- 2. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- 3. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012.